Yuxin (Shirley) Li

Tel: +86 18982209313 | +852 66428808

Email: ylinq@connect.ust.hk Personal Website: www.yuxin.li

Education

The Hong Kong University of Science and Technology (HKUST)

2022 - 2026

Bachelor of Engineering in Computer Science

Hong Kong, China

Core Courses: Machine Learning, Large-Scale Machine Learning for Foundation Models, Fundamentals of Artificial Intelligence, Design and Analysis of Algorithms, Computer Architecture, Electro-Robot Design, Electronic and Information Technology

Research Experiences

* denotes co-first authorship

Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability

2025

Advisor: Yi R.(May) Fung, The Hong Kong University of Science and Technology

- Preprint (Under EMNLP Review): Wang, R.*, Li, Y.*, Fung, Y. & Zhang, T. (2025). Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability. arXiv preprint arXiv:2505.23703.
- Proposed an end-to-end framework that augments natural-language mathematical reasoning with formal-language verification.
- Designed NL-FL Problem Alignment to reformulate NL QA tasks as FL existence theorems, enabling direct interaction with a formal prover.
- Developed a Mixed Problem Input mechanism allowing the formal agent to solve QA and existence problems concurrently.
- Achieved 89.80% on MATH-500 and 84.34% on AMC, outperforming the NL baseline; solved several problems unreachable by the NL baseline even with more trials.

Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving 2025

Advisor: Tong Zhang, University of Illinois Urbana-Champaign

- Publication (Accepted by ICML 2025): Wang, R.*, Pan, R.*, Li, Y.*, Zhang, J., Jia, Y., Diao, S., Pi, R., Hu, J. and Zhang, T. (2025). MA-LoT: Model-Collaboration Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving. https://arxiv.org/pdf/2503.03205.
- Proposed MA-LoT, a next-generation formal theorem proving framework based on Lean4, which coordinates a prover and a corrector model via Long Chain-of-Thought (Long CoT) interactions.
- Decoupled cognitive subtasks: natural language whole-proof generation (prover) and iterative formal error correction (corrector), unified through structured role collaboration.
- Introduced a novel LoT-Transfer Learning pipeline that enables Long CoT reasoning in domain-specific settings without requiring task-specific annotations.
- Achieved **61.07**% accuracy on the Lean4 MINIF2F-TEST benchmark, outperforming DeepSeek-V3 (33.61%), InternLM-Step-Prover (50.70%), and Godel-Prover (55.33%).

Explore Selective Disclosure Bias with Networks of LLM-based Agents

2024

Advisor: Yongren Shi, The University of Iowa

- Built simulation environments to model how LLM-based agents form and update opinions under selective information sharing.
- Designed experiments to examine the effects of disclosure patterns on opinion clustering and polarization in agent networks.

- Contributed to the development of agent interaction protocols and logging mechanisms for traceable reasoning and response behaviors.
- Assisted in analyzing emergent dynamics using metrics from computational social science (e.g., homophily, information entropy).

Knowledge Discovery over Machine Learning

2023

Advisor: Minhao Cheng, The Pennsylvania State University

- Investigated how abstract mathematical theorems can be translated into practical machine learning algorithms and model behaviors.
- Assisted in formalizing mathematical insights (e.g., convexity, generalization bounds) to guide model design and optimization strategies.
- Conducted literature reviews bridging theoretical machine learning and mathematical foundations (e.g., functional analysis, information theory).
- Supported implementation and experimentation to evaluate theoretical insights using standard ML benchmarks.

Miscellaneous

 Peer Mentor, Computer Science and Engineering Department, HKUST Deep Learning Certification, NVIDIA Deep Learning Institute Peer Mentor, Peer-Mentoring Program, Mainland Students and Scholars Society (UG), HKUST Member, China Entrepreneur Network, HKUST 	2025
	2024
	2023
	2022
• Member, Mainland Students and Scholars Society (UG), HKUST	2022

SKILLS

Languages: English (Advanced), Mandarine (Native) **Technical:** : Python, C++, Java, Scala, RISC-V, LaTeX.